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A method for computing unsteady fully
nonlinear interfacial waves
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We derive a time-stepping method for unsteady fully nonlinear two-dimensional mo-
tion of a two-layer fluid. Essential parts of the method are: use of Taylor series
expansions of the prognostic equations, application of spatial finite difference formu-
lae of high order, and application of Cauchy’s theorem to solve the Laplace equation,
where the latter is found to be advantageous in avoiding instability. The method is
computationally very efficient. The model is applied to investigate unsteady trans-
critical two-layer flow over a bottom topography. We are able to simulate a set of
laboratory experiments on this problem described by Melville & Helfrich (1987), find-
ing a very good agreement between the fully nonlinear model and the experiments,
where they reported bad agreement with weakly nonlinear Korteweg–de Vries theories
for interfacial waves. The unsteady transcritical regime is identified. In this regime,
we find that an upstream undular bore is generated when the speed of the body is
less than a certain value, which somewhat exceeds the critical speed. In the remaining
regime, a train of solitary waves is generated upstream. In both cases a corresponding
constant level of the interface behind the body is developed. We also perform a
detailed investigation of upstream generation of solitary waves by a moving body,
finding that wave trains with amplitude comparable to the thickness of the thinner
layer are generated. The results indicate that weakly nonlinear theories in many cases
have quite limited applications in modelling unsteady transcritical two-layer flows,
and that a fully nonlinear method in general is required.

1. Introduction
In 1896, Fridtjov Nansen and his crew returned from their three year journey to

the Arctic Ocean. They brought to civilization a wealth of scientific observations
and descriptions of unexplained natural phenomena; one of them was the dead
water problem. Nansen discussed his observations on this phenomenon with Vilhelm
Bjerknes, who attributed the wave resistance to internal waves generated by the ship,
at the interface separating a layer of fresh water and heavier salt water. Today, one
hundred years after the FRAM expedition, knowledge of flows due to internal waves,
their origin and propagation is important in many connections, in addition to the dead
water problem. Relevant examples are flows in fjords and at sills, breaking of internal
waves and mixing processes in the ocean, motion in coastal water and sub-surface
waves in a layered ocean. An important aspect of the latter relates to oil exploration
in deep water, with operations performed from ships or oil platforms floating at the
sea surface, connected to subsea drilling or production via long cables. Knowledge of
currents in the ocean, which may be induced by internal waves, may be of importance
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for the design of such constructions, in addition to the wave and current effects at
the ocean surface. Dynamics of internal waves is also important in dimensioning
of submerged floating tunnels, which have been proposed across Norwegian fjords.
Further description of the scientific results of the FRAM expedition may be found
in Eliassen (1982).

This study is in particular motivated by needs relating to the two latter problems.
We want to investigate propagation properties of internal waves, their generation
and interaction with a bottom topography or a submerged body in the ocean; our
formulation is therefore unsteady. Observations in nature, see e.g. Farmer & Smith
(1980), Apel et al. (1985), and laboratory experiments, see e.g. Koop & Butler (1981),
Melville & Helfrich (1987), show that internal or interfacial waves may have quite
large amplitudes due to the relatively small differences in density, such that the flow
in many cases is outside the range of validity of weakly nonlinear theories. Motivated
by these and similar observations our formulation is fully nonlinear.

To simplify the problem we consider two-dimensional flow of a two-layer fluid. This
enables us to derive a time-stepping procedure using a pseudo-Lagrangian method,
where at each time step the position of the interface and the quantity φ1 − µφ2

are found, where φ1 and φ2 denote the velocity potentials in the lower and upper
layer, respectively, and µ = ρ2/ρ1, where ρ denotes the corresponding fluid density.
The discrete versions of the prognostic equations are obtained by Taylor series
expansions including several terms, as advocated by Dold & Peregrine (1985) and
Dold (1992), who studied nonlinear free surface flows. This leads to very efficient
computations.

The Eulerian velocity fields in the layers are obtained by solving the Laplace
equation at each time step. It turns out that accurate solution of the Laplace equation
is crucial to an algorithm for computing interfacial flows. Earlier works on the time
evolution of nonlinear interfacial flows have applied singularity distributions along
the interface to solve the Laplace equation, see e.g. Baker, Meiron & Orszag (1982),
Roberts (1983), Zhou & Graebel (1990) and Eliassen & Fjørtoft (1992). During the
development of the present method we have investigated the performance of vortex
or dipole distributions, but encountered problems due to numerical instability of the
solution even for moderate nonlinearity of the waves. This was also the conclusion
of the algoritm described by Baker et al. (1982), and, at the onset, of the algorithm
described by Roberts (1983). Roberts was, however, able to make modifications to
the scheme which removed the instabilities in his investigations. We have found it
advantageous to seek a different method than using singularity distributions directly
to solve the Laplace equation, and have chosen to employ Cauchy’s integral theorem
for this purpose. This method has been applied in several works on the evolution of
nonlinear free surface waves, see e.g. Vinje & Brevig (1981), Dold & Peregrine (1985),
Schultz, Huh & Griffin (1994) and references cited therein, and is reported to give
less problems with regard to numerical instability than other algorithms developed
for flows with free boundaries. We find that this is true also for computations of
interfacial waves, which is partly explained by a stability analysis (§3.2), where we
find that our scheme is neutrally stable for linear flows.

The physical Kelvin–Helmholtz instability, which is inherent to any transient inter-
face method once the wave amplitude becomes finite, makes modelling of interfacial
waves fundamentally different from free surface waves, however. This instability rep-
resents a difficulty since the time simulations become unstable to space disturbances
shorter than a certain threshold value, and then tend to break down. We shall avoid
the Kelvin–Helmholtz instability in the present formulation. This means that an ac-
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curate solution of the Laplace equation with a moderately fine space discretization is
important.

While Baker et al. (1982) basically used their method to simulate free surface
flows, Roberts (1983) simulated steadily progressing interfacial waves, and Eliassen &
Fjørtoft (1992) computed interfacial waves and roll-up of vortices developing from an
initial disturbance. Their method was also formulated for flows in three dimensions.

Here, we apply the model to investigate transcritical two-layer flow over a bottom
topography. This issue has been studied by means of hydraulic nonlinear theory or
weakly nonlinear dispersive models (Baines 1984; Grimshaw & Smyth 1986; Miles
1979, 1981; Melville & Helfrich 1987; Zhu, Wu & Yates 1987), assuming that the
amplitude is small, which, however, may be a severe restriction in many cases. We
are able to simulate a set of laboratory experiments described by Melville & Helfrich
(1987) on transcritical flow, which to our knowledge have not yet been confirmed by
theoretical and numerical models. In this set of experiments, where the elevation of the
interface is rather large, we find a striking agreement between the fully nonlinear model
and the experiments, where severe disagreement with weakly nonlinear Korteweg–de
Vries (KdV) theories for interfacial waves was reported. Furthermore, we investigate
the upstream generation of solitary waves when the depth ratio between the two
fluids is 1 to 4. In all cases here we find that trains of solitary waves with amplitudes
comparable to the thickness of the thinner layer are generated, irrespective of the
nonlinearity of the forcing (the volume under the geometry cannot be too small). This
means that weakly nonlinear theories are inadequate in the examples considered.

Upstream influence in a two-layer fluid has its counterpart in free surface flows,
see e.g. Wu (1987) and Casciola & Landrini (1996) and the references therein. In
the latter paper the evolution of long waves on the surface of a one-layer fluid is
considered, and fully nonlinear simulations are compared with those of Boussinesq
and KdV models. Casciola & Landrini find that weakly nonlinear models in most
cases capture most of the features observed in the fully nonlinear solutions of forced
long waves (except close to wave breaking). This is fundamentally different from what
we find here for a two-layer fluid with (ρ1 − ρ2)/ρ1 small.

The literature on nonlinear internal waves is rather extensive. The first works date
back to Keulegan (1953) and Long (1956) who investigated interfacial solitary wave
solutions exploiting weakly nonlinear Boussinesq equations and the KdV equation,
finding sech2-profiles. Benjamin (1967) investigated weakly nonlinear internal waves
when one of the layers is infinitely deep, also allowing for a continuous stratification,
finding solitary waves of algebraic form. He also investigated flows due to two infinite
layers of different, but constant, densities separated by an intermediate layer where
the density can vary. The latter problem was at the same time considered by Davis
& Acrivos (1967). Later Ono (1975) generalized the work of Benjamin to include
unsteady behaviour of algebraic solitary waves, deriving an equation which later was
termed the Benjamin–Ono (BO) equation. To bridge the gap between the shallow
water and the BO equations Joseph (1977) and Kubota, Ko & Dobbs (1978) derived
a formulation, which is termed ‘the finite-depth theory’.

During the past couple of decades several works have been published on strongly
nonlinear periodic progressive waves, which for sufficiently large amplitude may be
overhanging (Holyer 1979; Vanden-Broeck 1980; Meiron & Saffman 1983; Turner &
Vanden-Broeck 1986). There are also several works on strongly nonlinear interfacial
solitary waves, which, like periodic waves, may be overhanging for large amplitude,
see e.g. Pullin & Grimshaw (1988). Furthermore, solitary waves are found to have
broadening effect due to the limited depth of the thicker layer (Amick & Turner
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1986; Turner & Vanden-Broeck 1988). We have used our method to recompute
weakly nonlinear interfacial waves, steep periodic wave trains and nonlinear solitary
waves, arriving at the results described in the cited works.

It is relevant to mention the rather broad activity on internal waves, see e.g. Staquet
& Sommeria (1996).

The paper is organized as follows. In §2 the mathematical formulation is given,
including a description of the time-stepping procedure and the solution procedure of
the Laplace equation. (We note that §2.2 describing the time-stepping procedure in
many steps is necessarily quite similar to the descriptions by Roberts (1983), Zhou
& Graebel (1990) and Eliassen & Fjørtoft (1992).) Section 3 describes the numerical
implementation, stability, accuracy and convergence of the method, and how we
prevent breakdown of the simulations, which can be caused by the physical Kelvin–
Helmoltz instability in flows with a finite velocity jump at the interface. Further details
of the method may be found in Friis (1995). In §4 we compare fully nonlinear solitary
wave solutions with available experiments and weakly nonlinear theories. Section 5 is
devoted to transcritical two-layer flow over a bottom topography, upstream influence
and generation of solitary waves. Finally, §6 is a conclusion.

2. Mathematical formulation
2.1. The boundary value problem

We consider two-dimensional motion of two fluid layers of infinite horizontal extent
under the action of gravity, with the gravitation force along the negative vertical
direction. The lower fluid layer has thickness h1 at rest and constant density ρ1, and
the upper layer has thickness h2 at rest and constant density ρ2, where ρ2 is smaller
than ρ1. Hereafter, index 1 refers to the lower fluid, and index 2 to the upper. A
coordinate system O, xy is introduced with the x-axis along the interface at rest and
the y-axis pointing upwards. Unit vectors i, j are introduced accordingly. We assume
that the two fluids are homogeneous and incompressible and that the motion in each
of the layers is irrotational such that the velocities may be obtained by potential
theory, i.e.

v1 = u1i + v1j = ∇φ1, v2 = u2i + v2j = ∇φ2, (1)

where φ1 and φ2 satisfy the Laplace equation in their respective domains.
The kinematic boundary condition at the interface I separating the fluids is given

by

∂φ1

∂n
=
∂φ2

∂n
= Vn at I (2)

where ∂/∂n means differentiation along the unit normal n of the interface and Vn is
the normal velocity of the interface along n. The dynamic boundary condition at the
interface is obtained by balancing the pressure difference with the interfacial tension,
giving

p1 − p2 =
σ

RI
at I. (3)

Here σ denotes the coefficient of interfacial tension, RI the radius of curvature of
the interface being positive when drawn into fluid 1, and the pressure in each of the
layers is given by the Bernoulli equation, i.e.

pj

ρj
+
∂φj

∂t
+ 1

2
v2
j + gy = 0, j = 1, 2. (4)
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Figure 1. Two-dimensional interfacial flow.

We shall account in the model for a restrained or moving body in one of the
fluids. Here we develop the equations for a body in the lower layer, but note that
the equations may easily be modified to also account for a body in the upper layer.
For a (rigid) body moving with translatory velocity V , the kinematic condition at its
boundary B gives

∂φ1

∂n
= V · n at B. (5)

If V = 0, ∂φ1/∂n = 0 at B. The lower boundary of layer 1, outside a possible body,
is horizontal, and the kinematic boundary condition there gives

∂φ1

∂y
= 0 at y = −h1. (6)

As boundary condition on top of the upper fluid, which in realistic problems is a
free surface, we may in the cases under investigation justify the simplifying rigid lid
approximation, i.e.

∂φ2

∂y
= 0 at y = h2. (7)

To close the boundary value problem the motion is assumed to be either periodic in
the x-direction or disappear for x→ ±∞.

A schematic view of the problem is shown in figure 1.

2.2. Time-stepping procedure

A time-stepping procedure for the interface and the flow in the fluids may be derived
using the kinematic and dynamic boundary conditions at the interface. We adopt
a Lagrangian method where pseudo-Lagrangian particles are introduced on the
interface, each with a weighted velocity v× defined by

v× = (1− α)v1 + αv2, (8)

where v× · n = Vn and 0 6 α 6 1. A pseudo-particle coincides with a particle at the
interface in the lower fluid if α = 0, and with a particle at the interface in the upper
fluid if α = 1. We have applied different values of α in testing the method and find
that the best performance is achieved when α is chosen such that a typical horizontal
velocity of the pseudo-particles is as small as possible. (α is a constant in each of the
time simulations.) A pseudo-Lagrangian derivative is next introduced by

D×
dt

=
∂

∂t
+ v× · ∇. (9)
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To determine the position R = (X,Y ) of a pseudo-particle we have the following
relation:

D×R

dt
= v×. (10)

We next consider the dynamic boundary condition at the interface. The pressure in
the fluids may be written by means of (9)

pj

ρj
+

D×φj
dt
− v× · vj + 1

2
v2
j + gy = 0. j = 1, 2, (11)

Introducing (11) into the dynamic boundary condition (3) we find

D×(φ1 − µφ2)

dt
= v× · (v1 − µv2)− 1

2
(v2

1 − µv2
2)− (1− µ)gY − σ

ρ1RI
at I, (12)

where µ = ρ2/ρ1. This motivates introducing at the interface I

ψ = φ1 − µφ2. (13)

For later use (see §2.3) we also introduce

Υ = φ1 + φ2 (14)

and derive equations for ψ, Υξ and φ1ν = φ2ν at the interface, where the ξ- and
ν-variables are defined after (26), and thereafter find φ1ξ and φ2ξ from

φ1ξ =
1

1 + µ
(ψξ + µΥξ), (15)

φ2ξ =
1

µ
(φ1ξ − ψξ). (16)

Equations (10) and (12) contain sufficient information to integrate R and ψ forward
in time. It is, however, an advantage also to apply higher-order derivatives of (10) and
(12) in a time-stepping procedure for R and ψ. Following Dold & Peregrine (1985),
who studied free surface waves, the prognostic equations for R and ψ are obtained
by Taylor series expansions, as follows:

R(t+ ∆t) = R(t) + v×(t)∆t+
1

2!

D×v×
dt

(t)(∆t)2 +
1

3!

D2
×v×
dt2

(t)(∆t)3 + . . . , (17)

ψ(t+ ∆t) = ψ(t) +
D×ψ

dt
(t)∆t+

1

2!

D2
×ψ

dt2
(t)(∆t)2 +

1

3!

D3
×ψ

dt3
(t)(∆t)3 + . . . , (18)

This procedure has an error of the order (∆t)n+1/(n+ 1)! at each time step when
terms up to the nth derivative are included in the expansions, which is an essential
improvement compared to an algorithm based on first-derivatives only. In the com-
putations we truncate the series after n = 7. Procedures for how to evaluate Dm

×v×/dt
m

(m = 1, . . . , 6) and Dm
×ψ/dt

m (m = 1, . . . , 7) are described at the end of §2.3 and in
Appendix A.

2.3. Solution of the Laplace equation

As noted in the Introduction, accurate solution of the Laplace equation is crucial to
an algorithm for computing interfacial flows, and we here apply Cauchy’s integral
theorem for this purpose. Invoking complex analysis we introduce the complex
variable z = x + iy and complex velocities qj(z) = uj − ivj , j = 1, 2. Since qj are
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analytic functions of z, we have by use of Cauchy’s integral theorem for z′ outside
the respective fluid layer ∮

C1

q1dz

z − z′ = 0,

∮
C2

q2dz

z − z′ = 0. (19)

The contours Cj (j = 1, 2) are composed of the interface, the rigid horizontal
boundaries of the fluid layers, and C1 contains the contour of the body geometry. In
addition, Cj contains vertical boundaries, either in accordance with the periodicity of
the flow, or at infinity. The integrals over these parts of Cj vanish due to the conditions
described in §2.1 after (7). The integration is clockwise along C1 and counterclockwise
along C2.

The rigid wall conditions (6) and (7) at y = −h1, h2 are accounted for by applying
the method of images. For a point z at the interface, the images about the rigid walls
at y = −h1 and y = h2 are given by, respectively,

z̃1 = z∗ − 2ih1, z̃2 = z∗ + 2ih2, (20)

where a star denotes a complex conjugate. Analytical continuation of the complex
velocities outside the rigid boundaries of the respective fluid domains are obtained
from

qj(z̃j) = q∗j (z) = uj(x, y) + ivj(x, y). (21)

Equation (19) then gives ∫
I

q2(z)dz

z − z′ −
∫
I

q∗2(z)dz∗

z∗ + 2ih2 − z′
= 0, (22)

∫
I+B

q1(z)dz

z − z′ −
∫
I+B

q∗1(z)dz∗

z∗ − 2ih1 − z′
= 0. (23)

Letting z′ approach I and B from outside each of the fluids and applying the Plemelj
formula we obtain from (22)–(23):

−πiq2(z
′) = PV

∫
I

q2(z)dz

z′ − z +

∫
I

q∗2(z)dz∗

z∗ + 2ih2 − z′
(z′ on I), (24)

πiq1(z
′) = PV

∫
I

q1(z)dz

z′ − z +

∫
I

q∗1(z)dz∗

z∗ − 2ih1 − z′
+

∫
B

q1(z)dz

z′ − z +

∫
B

q∗1(z)dz∗

z∗ − 2ih1 − z′
(z′ on I) (25)

πiq1(z
′) =

∫
I

q1(z)dz

z′ − z +

∫
I

q∗1(z)dz∗

z∗ − 2ih1 − z′
+ PV

∫
B

q1(z)dz

z′ − z +

∫
B

q∗1(z)dz∗

z∗ − 2ih1 − z′
(z′ on B) (26)

where PV denotes principal value. Only the real part of the principal value integrals
in (24)–(26) are singular.

Following the method by Dold & Peregrine (1985) for free surface flows, we
introduce a ξ-variable as coordinate along the interface, and tangential and normal
derivatives of the potentials at I and B by

qj = (φjs − iφjn)z
∗
s = (φjξ − iφjν)

z∗ξ

|zξ |2
, j = 1, 2 (27)
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where ( )s = ∂/∂s denotes differentiation along the arclength s of I , ( )n = ∂/∂n,
( )ξ = ∂/∂ξ and ( )ν = ∂/∂ν. We hereafter work with the scaled tangential and
normal velocities φjξ = φjs|zξ | and φjν = φjn|zξ |.

We then subtract (24) from (25), multiply by z′ξ and apply (27). From the imaginary
part of the result we obtain the following equation for Υξ = φ1ξ + φ2ξ:

πΥξ(ξ
′) =

2

µ+ 1

∫
I

Im

(
z′ξ

z′ − z

)
ψξdξ +

µ− 1

µ+ 1

∫
I

Im

(
z′ξ

z′ − z

)
Υξdξ

+

∫
I

Re

(
z′ξ

z∗ − 2ih1 − z′
−

z′ξ

z∗ + 2ih2 − z′

)
φ1νdξ

+
1

1 + µ

∫
I

Im

(
z′ξ

z∗ − 2ih1 − z′
+

z′ξ

z∗ + 2ih2 − z′

)
ψξdξ

+
1

1 + µ

∫
I

Im

(
µ

z′ξ

z∗ − 2ih1 − z′
−

z′ξ

z∗ + 2ih2 − z′

)
Υξdξ

+

∫
B

Re

(
−

z′ξ

z′ − z +
z′ξ

z∗ − 2ih1 − z′

)
φ1νdξ

+

∫
B

Im

(
z′ξ

z′ − z +
z′ξ

z∗ − 2ih1 − z′

)
φ1ξdξ (28)

for z′ on I . To obtain (28) we have also used the kinematic condition (2) at the
interface. We note that (28) does not contain principal value integrals.

Next, multiplying (24) and (25) by z′ξ and taking the real part, we may combine
the resulting equations to give

π(1 + µ)φ1ν(ξ
′) = PV

∫
I

Re

(
z′ξ

z′ − z

)
ψξdξ + (1− µ)

∫
I

Im

(
z′ξ

z′ − z

)
φ1νdξ

+
1

1 + µ

∫
I

Re

(
z′ξ

z∗ − 2ih1 − z′
+ µ

z′ξ

z∗ + 2ih2 − z′

)
ψξdξ

+
µ

1 + µ

∫
I

Re

(
z′ξ

z∗ − 2ih1 − z′
−

z′ξ

z∗ + 2ih2 − z′

)
Υξdξ

−
∫
I

Im

(
z′ξ

z∗ − 2ih1 − z′
− µ

z′ξ

z∗ + 2ih2 − z′

)
φ1νdξ

+

∫
B

Re

(
z′ξ

z′ − z +
z′ξ

z∗ − 2ih1 − z′

)
φ1ξdξ

+

∫
B

Im

(
z′ξ

z′ − z −
z′ξ

z∗ − 2ih1 − z′

)
φ1νdξ (29)

for z′ on I , where (2) is applied.
Finally, multiplying (26) by z′ξ and taking the imaginary part, we obtain

πφ1ξ(ξ
′) =

∫
I

Re

(
−

z′ξ

z′ − z +
z′ξ

z∗ − 2ih1 − z′

)
φ1νdξ

+
1

1 + µ

∫
I

Im

(
z′ξ

z′ − z +
z′ξ

z∗ − 2ih1 − z′

)
ψξdξ

+
µ

1 + µ

∫
I

Im

(
z′ξ

z′ − z +
z′ξ

z∗ − 2ih1 − z′

)
Υξdξ
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+PV

∫
B

Re

(
−

z′ξ

z′ − z +
z′ξ

z∗ − 2ih1 − z′

)
φ1νdξ

+

∫
B

Im

(
z′ξ

z′ − z +
z′ξ

z∗ − 2ih1 − z′

)
φ1ξdξ (30)

for z′ on B.
Equations (28)–(30) determine Υξ and φ1ν at the interface I and φ1ξ at the body

B, since ψ on I and φ1ν on B are given. The velocities on both sides of the interface
are finally found from (15), (16), (27). If the body is entirely surrounded by fluid, we
must also specify the circulation around B, i.e.∫

B

φ1ξ(ξ)dξ = 0 (31)

which gives an additional equation.
We are now able to evaluate the terms containing the first derivatives in (17)–(18).

In order to obtain the second- and third-order pseudo-Lagrangian derivatives of R
and ψ, we need to compute ∂qj/∂t and ∂2qj/∂t

2, which, by exploiting their analyticity,
may be found from Cauchy’s theorem, giving the same integral equations (24)–(26)
as for the velocities qj . Similar integral equations for ∂φ1ν/∂t, ∂Υξ/∂t and ∂2φ1ν/∂t

2,
∂2Υξ/∂t

2 may be constructed by exploiting the relevant boundary conditions at the
interface; the details are given in Appendix A. Pseudo-derivatives of order four
to seven are obtained by backwards differencing in time, based on the third-order
pseudo-derivatives.

2.4. The Boussinesq approximation

When computing interfacial waves in e.g. the ocean, where µ is close to 1, we may
apply the Boussinesq approximation. We then keep 1− µ = ε in the bouyancy term
of (12), but put µ = 1 in all other terms. For the particular choice α = 1/2 in (8) we
then obtain

D×R

dt
= v×,

D×ψ

dt
= −εgY +

σ

ρRI
at I. (32)

The equations for determining Υξ and φ1ν also become simplified. In particular, for
h1 = h2 = ∞ and no body present in the fluid, we obtain

Υ ′ξ =
1

π

∫
I

Im

(
z′ξ

z′ − z

)
ψξdξ, φ′1ν =

1

2π
PV

∫
I

Re

(
z′ξ

z′ − z

)
ψξdξ (33)

which are valid for a nonlinear interface, and mean that Υξ and φ1ν are determined
by integrals of (the given) ψξ . This was also noted by Eliassen & Fjørtoft (1992).

This result is in contrast to modelling nonlinear free surface waves (µ = 0) in
infinite water depth, where a set of equations must be solved to determine φ1ν at each
time step.

When h1 and h2 are finite, the Boussinesq approximation is still better, since fewer
iterations are required in the solution procedure than when µ 6= 1, see §3.1.

3. Numerical aspects of the method
3.1. Implementation

The functions in the problem are assumed to be smooth along the boundaries and
at any point within the fluids. We discretize the interface by N pseudo-Lagrangian
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points and the body by NB points, where ξ takes integer values at each point,
i.e. ξ = 1, 2, . . . , N at I and ξ = 1, 2, . . . , NB at B. The integrals are approximated
by the trapezoidal rule. This integration rule gives a spectrally accurate numerical
integration, i.e. the error is exponentially small, when the integrand is periodic and has
sufficiently smooth derivatives, see e.g. Shelley (1992). We find that the trapezoidal
rule is well suited to the problems considered here. Following Dold & Peregrine
(1985), the principal value integrals are evaluated by first expanding the integrand in
a series in the vincity of the pole at z = z′, and then carrying out the integration. For
a smooth real function f we have

PV

∫ N

0

z′ξ

z′ − z(ξ)
f(ξ)dξ =

N∑
ξ=1

[A(ξ′, ξ) + iB(ξ′, ξ)]f(ξ)− fξ(ξ′), (34)

where

A+ iB =

{
z′ξ/(z

′ − z), z 6= z′

zξξ/2zξ, z = z′.
(35)

The accuracy of the integration in (34) is determined by applying the numerical
differentiation formula. In most of the computations we apply a 10-point finite
difference formula based on a tenth-order polynomial expansion with an error of
order |∆R|10. In the case of periodic motion we also in some examples obtain the
derivatives from truncated Fourier series, giving the derivatives and the approximation
to the integral in (34) with spectral accuracy. The discrete forms of the integral
equations (28), (29) and (30) are given in Appendix B.

To solve the equations we first invert (30) by Gaussian elimination, expressing
φ1ξ at B by the unknowns φ1ν and Υξ at I . Equations (28)–(29) are then solved by
iteration using the generalized conjugate residuals method, which is both robust and
efficient. The organization of the equations for the unknowns at the interface on the
form (28)–(29) is an efficient solution procedure. In order to minimize the round-off
error, all computations are performed by double-precision arithmetic.

As described in §2.2 we use expansions (17)–(18) to step R and ψ forward in
time, where derivatives up to the third order are obtained from a combination of
analytical formulae and solution of the integral equations. Further derivatives are
found by use of four orders of backwards differencing. During the first 5 time steps
of the computation the order of the backward differencing polynomial is gradually
increased from 0 to 4. The time steps are small in the beginning of the computations,
and are gradually increased up to a constant value ∆t.

In all numerical examples presented we neglect the interfacial tension, i.e. σ = 0 in
the computations.

A regridding algorithm is applied to the pseudo-particles in order to maintain an
even distance between the node points at the interface during the calculations.

Mostly because of the Kelvin–Helmholtz instability (see §3.3) smoothing is required
in order to maintain a stable solution. We use two smoothing formulae which are
both based on a 15-point interpolation polynomial: one smooths 2-point periodic
(sawtooth) disturbances from the grid, the other removes both 3-point and 2-point
periodic disturbances. Both smoothing formulae remove very little energy from the
waves.

3.2. Stability of the linearized scheme; dispersion relation

It is of interest to investigate the stability and the dispersion relation of the linearized
scheme. We consider periodic perturbations Y , φ1, φ2, satisfying the linear versions
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of (2), (10) and (12) (with σ = 0) at y = 0, i.e.

∂Y

∂t
=
∂φ1

∂y
,

∂ψ

∂t
+ (1− µ)gY = 0. (36)

There is no geometry in the fluids and we set h1 = h2 = ∞. From the integral equation
(29) we find

π(1 + µ)
∂φ1

∂y
= −PV

∫ ∞
−∞

ψx

x− x′dx (37)

where the principal value integral is the double-sided Hilbert transform of ψx. By
combining (37) with (36) we find

∂2ψ

∂t2
=
g(1− µ)

π(1 + µ)
PV

∫ ∞
−∞

ψx

x− x′dx. (38)

We consider a periodic interface and discretize the interface by N points per
wavelength, giving for the discrete version of (38)

∂2ψ(ξ′)

∂t2
= −g(1− µ)

π(1 + µ)
(AD1 −D2)ψ, ξ′ = 1, 2, . . . , N (39)

where A is given by the periodic version of (35) and D1, D2 denote the operators for
the first and second derivatives. To investigate the stability of the numerical scheme
we seek solutions of (39) on the form ψ(x, t) = ψ̂(x)eiωt (and Y (x, t) = Ŷ (x)eiωt) where
iω = ωr + iωi. This leads to the following eigenvalue problem

ω2ψ̂ =
g(1− µ)

π(1 + µ)
(AD1 −D2)ψ̂. (40)

The solution of this problem, obtained by a standard method, contains a double
set of N non-zero eigensolutions corresponding to linear waves with wavenumbers
k = 1, 2, . . . , N/2 and (eigen) frequencies ω = ωi1, ωi2, . . . , ωiN/2, which may propagate
in both horizontal directions. The first set has phase shift 0, the other phase shift π/2.
We find that ωr = 0 for all wavenumbers, both when the derivatives are obtained
by the 10-point finite difference formula and by the truncated Fourier series, which
means that the numerical scheme is neutrally stable for linear waves.

Next we consider the analytical and numerical dispersion relations of the problem,
which are obtained by inserting ψ = Re(ψ̂eikx−iωt) into (38) and (39) (ω denotes the
frequency and k the wavenumber). Noting that the double-sided Hilbert transform of
eikx is determined by

PV

∫ ∞
−∞

eikx

x− x′dx = iπeikx′ (41)

we find from (38) that the analytical dispersion relation becomes

ω2 = gk(1− µ)/(1 + µ). (42)

When the periodic interface is discretized by N points per wavelength we obtain
from (39) a numerical dispersion relation for wavenumbers up to k = N/2, the
Nyquist wave. This dispersion relation is obtained by differencing in two ways: either
by the 10-point finite difference formula or by the truncated Fourier series. Since
the tapezoidal rule yields a spectrally accurate approximation to the integral in (41)
(see §3.1) we expect that the latter method gives a numerical dispersion relation
with spectral accuracy, as also found by the computations. We note that the various
dispersion relations are independent of the value of µ, except for the prefactor on the
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Figure 2. Numerical dispersion relation. Solid line: analytical (42) and spectral method. Dotted
line: 10-point finite difference formula used for numerical differentiation (µ = 0.1).

right of (40), which is because we for the moment have set h1 = h2 = ∞. In fact, we
recover the results for free surface waves (µ = 0) which is discussed by Dold (1992).

In figure 2 we show the graph of ω2 versus k for the analytical dispersion relation
(42) and the two different numerical dispersion relations. (The numerical dispersion
relation corresponding to the spectral derivatives coincides with the analytical disper-
sion relation for k 6 N/2.) The numerical dispersion relation due to the 10-point finite
difference formula coincides with the analytical dispersion relation up to k ∼ N/4,
but deviates somewhat for larger wavenumbers. This deviation is of minor impor-
tance, however, since in the numerical simulations we apply smoothing to remove
short disturbances. From numerical experiments it turns out that the 10-point finite
difference formula is adequate for the examples considered here.

3.3. The effect of the Kelvin–Helmholtz instability

When we apply the model to linear interfacial waves, we encounter no problems with
regard to instability. Once the wave steepness becomes finite, however, the physical
Kelvin–Helmholtz (K-H) instability due to the wave-induced velocity jump occurring
at the interface is included in the model. This means that the numerical solution
becomes unstable to disturbances with wavelength shorter than a threshold value,
λKH , say, which prevents us from refining the space discretization below this value, if
no smoothing is applied. The nonlinear computations show that λKH has a marked
increase with growing velocity jump at the interface. λKH also grows with increasing
µ = ρ2/ρ1. This increase is, however, moderate when µ is larger than about 0.2, since
the velocity shear due to the interfacial waves is decreasing with increasing µ.

The K-H instability due to interfacial waves in a real two-layer fluid, or a fluid with
a localized vertical density variation, is in most cases limited by local nonlinearity,
viscous effects and/or interfacial tension, which are effects that prevent breakdown
of the large-scale wave motion. Thus, the present model, where the effect of the K-H
instability is suppressed, may provide a reasonable approach to large-scale behaviour
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(a) N ω∆T Y /a ∆E/E (b) ω∆t Y /a ∆E/E
20 2.0 0.00260000 0.00600000 0.5 0.0002100 0.0004000
20 1.5 0.00000860 0.00000530 0.2 0.0000027 0.0000074
20 1.0 0.00000160 0.00000170 0.1 0.0000012 0.0000024
20 0.5 0.00000180 0.00000370 0.01 0.0000016 0.0000017

30 0.5 0.00000030 0.00000015
30 0.25 0.00000009 0.00000014
30 0.1 0.00000014 0.00000025
30 0.05 0.00000020 0.00000037

60 0.1 0.00014000 0.00013000
60 0.05 0.00000130 0.00000120
60 0.01 0.00000002 0.00000003

Table 1. (a) Propagation of periodic interfacial waves (wave period 2π/ω). Relative error after four
wave periods in the mean interfacial level and energy E vs. discretization N and smoothing interval
ω∆T . Time step ω∆t = 0.01. ak = 0.345, µ = 0.1, h1 = h2 = ∞. 2-point smoothing for N = 20, 30;
3-point smoothing for N = 60. (b) Same as (a), but ω∆T = 1.0, N = 20, 2-point smoothing.

of interfacial waves, as long as λKH is much smaller than the main length scales of
the wave motion.

The K-H instability makes modelling of interfacial waves fundamentally different
from free surface waves. This instability represents a difficulty since the space dis-
cretization in a two-layer model cannot be too fine, and convergence of transient
simulations of steep waves may be difficult to document. However, we may obtain
convergence when the wave amplitude is moderate (§3.4). We may also compare
the waves resulting from the time simulations with steady solutions of interfacial
waves, where arbitrary refinement of the discretization may be performed, providing
complementary documentation of convergence (§5.4).

3.4. Accuracy and convergence

To measure the accuracy and the convergence of the method we investigate how wave
form, volume of the wave, mean level of the interface and energy are conserved in
some examples for waves propagating steadily along the interface.

The kinetic energy due to the motion in the fluid layers may, by applying the
divergence theorem and the kinematic boundary conditions, be expressed as an
integral along the interface. By adding the potential energy we find that the energy
of the fluid motion is given by

E = 1
2
ρ1

∫ N

0

ψ(ξ)φ1ν(ξ)dξ + 1
2
gρ1(1− µ)

∫ N

0

Y 2(ξ)Xξ(ξ)dξ. (43)

The initial profile and propagating velocity c of the wave(s) are determined by
applying the equations of §§2.2–2.3 in a frame of reference moving with the speed of
the wave, i.e. where ∂/∂t = −c∂/∂x. The resulting nonlinear equations are solved by
means of Newton’s method.

In the first example we compute periodic nonlinear interfacial waves propagating
during a time interval corresponding to four wave periods. The wave data are:
ak = 0.345 (a the wave amplitude, k the wavenumber), µ = 0.1 and h1 = h2 = ∞. We
show in table 1 the relative error in the mean interfacial level (Y ) and the energy (E),
for various discretizations per wavelength (N), time step (∆t) and smoothing interval
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N ∆t(g/h2)1/2 ∆T (g/h2)1/2 ∆V/V ∆E/E
61 0.1 5.0 0.000300 0.001000
81 0.1 3.0 0.000030 0.000090
125 0.1 1.0 0.000005 0.000005

81 3.0 3.0 0.002000 0.000900
81 1.0 3.0 0.000200 0.000010
81 0.5 3.0 0.000030 0.000090

Table 2. Relative error in volume V and energy E due to a solitary wave which has propagated a
distance of 100h2. |Y |max/h2 = 0.7, h1/h2 = 4, µ = 0.9. 2-point smoothing. The wave profile is shown
in figure 4(b).

(∆T ). The table clearly demonstrates convergence of the method with respect to
increasing N and decreasing ∆t, that the smoothing interval ∆T cannot be too large,
and that highest accuracy is obtained for relatively small ∆T . The smallest relative
error in these computations is only 3 × 10−8. The relative errors in the wave form
and the propagation speed are of the same order as for Y and E. A more frequent
smoothing reduce the aliasing errors in the simulations, see table 1(a) for N = 20 and
60.

In the next example a solitary wave is considered, with |Y |max/h2 = 0.7, h1/h2 = 4,
µ = 0.9. The interface is discretized from the wave crest and out to horizontal positions
±59.5h2, where |Y /h2| becomes smaller than 10−10. The resulting wave is shown in
figure 4(b) below. Table 2 displays the relative error in volume and energy after the
wave has propagated a distance 100h2. Again the computations show convergence of
the method, and that a relatively small smoothing interval ∆T gives a high accuracy.
We note though that ∆t/∆T always should be a small number in the computations, in
order to smooth as little as possible. The smallest relative error in these computations
is 5× 10−6.

4. Solitary waves: comparison with experiments and weakly nonlinear
theories

One way of illustrating the usefulness of our fully nonlinear method is to com-
pare solitary wave solutions with available laboratory measurements and results by
asymptotic theories for such waves, i.e. the Korteweg–de Vries (KdV) theory, the
Benjamin-Ono (BO) theory and the finite-depth theory, as mentioned in the Intro-
duction. Such a comparison is also useful in the context of the findings in §5, which
show that a moving body in the cases considered generates interfacial waves with
amplitudes comparable to the thickness of the thinner layer.

To be specific, we briefly describe the assumptions behind these theories and present
the respective formulae for solitary wave solutions. Relevant to the applications in
§5 we here give formulae for h2 < h1, i.e. solitary waves with depression. Keulegan
(1953) and Long (1956) considered interfacial waves in a two-layer fluid assuming
that the waves are long, accounting for weak dispersion, and the amplitude small
compared to the total depth of the fluid, i.e. kH � 1, a/H � 1, where k is a typical
wavenumber and H = h1 +h2. These assumptions lead to the KdV equation as model
for the evolution of a disturbance at the interface. The solitary wave solution for a
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depression reads, in our notation (Long 1956, equations (19)–(28))

η(x− ct) = −a sech2[(x− ct)/λ], (44)

λ2 =
4h3

2

3a

1 + ρ1h1/(ρ2h2)

1− ρ1h
2
2/(ρ2h

2
1)
, (45)

c2

c2
0

− 1 = a
ρ2h1/h2 − ρ1h2/h1

ρ1h2 + ρ2h1

, (46)

c2
0 =

gh1h2(ρ1 − ρ2)

ρ1h2 + ρ2h1

. (47)

The case when h1 → ∞, kh2 � 1 and a/h2 � 1 (accounting for weak dispersion)
was considered by Benjamin (1967, equations (5.3)–(5.7)) who found a solitary wave
with algebraic decay, given by

η(x− ct) =
−a

1 + (x− ct)2/λ2
, (48)

λ =
4ρ2

3ρ1

h2
2

a
, (49)

c2

c2
0

− 1 =
3a

h2

, (50)

c2
0 =

ρ1 − ρ2

ρ2

gh2. (51)

Later, Joseph (1977) and Kubota et al. (1978) provided a theory, termed the finite-
depth theory, for the intermediate range h2/H � 1, kH = O(1), a/h2 � 1 (accounting
for weak dispersion) which includes both the KdV and the BO equations as limiting
cases. A solitary wave solution was developed in the Boussinesq limit by Joseph (1977,
equations (7)–(14)). According to Segur & Hammack (1982, equations (37)–(38)) this
solitary wave solution may be obtained for (ρ1 − ρ2)/ρ2 not small as

η(x− ct) =
−a sech2[(x− ct)/λ]

1 + {tan(H/λ) tanh[(x− ct)/λ]}2 , (52)

λ cot
H

λ
=

4ρ2

3ρ1

h2
2

a
, (53)

c

c0

− 1 =
h2

2H

{
1− ρ1 − ρ2

ρ2

2H

λ
cot

(
2H

λ

)}
, (54)

c2
0 =

ρ1 − ρ2

ρ2

gh2. (55)

In Koop & Butler (1981) experiments on interfacial solitary waves, using water
above freon, with µ = 0.633 and h2/h1 = 5.086, were compared with these asymptotic
theories. Koop & Butler had, however, no fully nonlinear method available. In figure
3 we have reproduced the data set from their figure 10, displaying the half-mean
elevation of solitary waves, defined by L =

∫ ∞
−∞ Y dx/(2a), as a function of the

maximal elevation a = |Y |max. Due to the moderate value of h2/h1 we do not expect
the BO equation to give good results in this comparison. The figure clearly shows
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Figure 3. Solitary waves. Comparison between fully nonlinear theory (3), laboratory measurements
by Koop & Butler (1981, figure 10) (vertical bars), KdV theory (light dotted line), BO theory (heavy
dotted line), finite-depth theory (solid line). Vertical coordinate: half-mean elevation of solitary
wave. Horizontal coordinate: amplitude a = |Y |max. µ = 0.633, h2/h1 = 5.086.

that the KdV (equations (44)–(47)) and the finite-depth (equations (52)–(55)) theories
have quite limited ranges of validity. In these examples the finite-depth theory is good
up to a/h1 about 0.1, while the KdV theory is relevant for somewhat larger a/h1, up
to about 0.2. Koop & Butler also provided an extension of the KdV theory, which
increased its domain of validity. However, for non-dimensional amplitude of order
unity, which is a relevant elevation in many applications (see also §5), the results
clearly demonstrate the shortcomings of the finite-depth and the KdV theories.

In figure 3 are also displayed results obtained by the fully nonlinear method, which
show excellent agreement with the experimental measurements for the whole range
of a/h1. We note that the non-dimensional area under the waves is increasing with
the amplitude for a/h1 > 1, which is due to the broadening effect occurring for a
limited ratio between h2 and h1, see Amick & Turner (1986) and Turner & Vanden-
Broeck (1988). For small amplitudes our method agrees with the asymptotic theories.
We have performed computations in the BO case, finding close agreement with the
fully nonlinear solution when a/h2 6 0.03. We must then discretize the interface for
|X/h1| < 200 (results not shown here).

The fundamental differences between the fully nonlinear and the weakly nonlinear
methods are further illustrated by the solitary wave profiles shown in figure 4, which
are relevant for the applications described in the next section. In these examples
h1/h2 = 4. We observe that the finite-depth, KdV and fully nonlinear methods are
in approximate agreement for |Y |max/h2 up to about 0.15 (figure 4a). For non-
dimensional amplitude of order unity, however, the differences between the methods
become remarkably large. Both the finite-depth theory and the KdV theory now
predict quite unrealistic wave shapes.

These remarkable differences have motivated us to set up experiments at the Uni-
versity of Oslo with the purpose of a general comparison with theory and to broaden
our understanding of propagation properties of internal waves. The experiments are
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Figure 4. Profiles of solitary waves obtained by fully nonlinear (filled squares), KdV (dotted line)
and finite-depth (solid line) theories. h1/h2 = 4 and t = 0 in all cases. (a) |Y |max/h2 = 0.15, µ = 0.9;
(b) |Y |max/h2 = 0.7, µ = 0.9; (c) |Y |max/h2 = 0.888, µ = 0.8114; (d) |Y |max/h2 = 1.171, µ = 0.8114.
(Note the differences in vertical scale.)

in an early phase; however, preliminary results show very good comparison with the
strongly nonlinear interface method, even for a not very sharp pycnocline.

Figure 4 again illustrates that the sech2-profiles from the KdV theory are closer
to the fully nonlinear solution than those due to the finite-depth theory, in spite of
the relatively large ratio between h1 and h2 in these examples which might lead us to
believe that the opposite should be true. This somewhat surprising result has been
explained by Segur & Hammack (1982) who found that the range of validity of the
finite-depth theory with regard to nonlinearity is far more limited than that for the
KdV theory, so that the former theory produce unrealistic results much earlier than
the latter.

5. Transcritical flow over topography
We now apply the model to transcritical two-layer flow over a bottom topography.

There are several questions concerning this subject: Under which conditions is the
flow unsteady? Another aspect is upstream influence in stratified flows, which in
part can be addressed by the present two-layer model. Furthermore, for which
conditions may transcritical flow over topography generate upstream solitary waves?
These topics have been discussed in earlier works describing observations in nature,
laboratory experiments and theoretical models. The theoretical models used are
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basically from hydraulic nonlinear theory, see e.g. Baines (1984), Grimshaw & Smyth
(1986), or weakly nonlinear dispersive models, see e.g. Miles (1979, 1981), Melville &
Helfrich (1987), Zhu et al. (1987). These methods have limited validity with regard
to nonlinearity and dispersion, however, and give unrealistic predictions for finite-
amplitude and moderate wavelength.

Melville & Helfrich (1987, referred to below as MH), described two sets of exper-
iments on interfacial transcritical flow over topography. They compared the experi-
ments with simulations using the forced KdV equation and an extended KdV model,
where in the latter a cubic nonlinearity was taken into account in addition to the
usual quadratic nonlinearity. They got, however, a poor agreement between theory
and experiments when the ratio between the depths of the layers was 1 to 4, but
better agreement when the ratio was 1 to 2. We shall apply our method to the set
of experiments of MH where the disagreements between the KdV models and the
observations were most severe, and we shall find a very good agreement between the
fully nonlinear model and the experiments. Furthermore, we shall apply our model
to investigate generation of upstream solitary waves in transcritical flows.

The data for the set of experiments of MH we shall compare with are as follows:
ρ2 = 0.8 g cm−3, h2 = 3 cm, ρ1 = 0.986 g cm−3, h1 = 12 cm. The effect of a bottom
topography was simulated in the experiments by moving a body in the upper layer
with a profile given by y = h2 − H0sech2(Kx), where KH0 = 0.1989 (this geometry
is the two-dimensional counter-part of Nansen’s ship). The height of the body was
determined by H0/h0 = 0.5, with the reference depth h0 = h1h2/(h1 + h2). (This means
that H0/h2 = 0.4.) MH used a tank of length L = 15 m (L/h2 = 500) and recorded
the displacement of the interface after 5 m (x1/h2 = 166), hereafter referred to as
station 1, and the horizontal velocity in the lower layer after 9.25 m (x2/h2 = 308),
hereafter referred to as station 2. At the latter station photographs of the interface
were also taken. (We note that MH, p. 36 give H0 = 5.1 cm, which, however, does
not seem to fit with the other data given.)

We use all the above conditions in our simulations, except at the upper boundary,
where the free surface is replaced by a rigid wall.

5.1. Speed and elevation of the upstream disturbance

As reference speed we shall use the linear shallow water speed c0 given by (47).
In MH (equation (2.6) and p. 34), applying the Boussinesq approximation, their
reference speed is given by c̃0 = [gh0(ρ1 − ρ2)/ρ0]

1/2, where ρ0, however, is not
explicitly defined. It seems likely that ρ0 would be chosen equal to ρ1, and we have
used this reference density in the comparisons. This gives a very good agreement
between their experiments and our comparisons, see figure 5. If ρ0 is chosen such that
c̃0 = c0 we still get a fair agreement.

In the first comparison we consider the speed c of the leading disturbance of the
interface as a function of the speed U of the geometry. This is one of the most
robust quantities to measure and compare, and was determined in the experiments by
recording the elapsed time of the leading disturbance between the recording stations.
We have followed the same procedure in extracting c from the computations, and the
excellent agreement is shown in figure 5(a).

Next we show in figure 5(b) the maximum elevation |Y |max of the upstream
disturbance. We use the same vertical scale as MH (with h0 as vertical reference
length). The computations show that |Y |max is growing somewhat as the body moves
down the wave-tank, and we therefore present results when the waves have reached
the far end of the tank. The agreement between the model and the experiments is in
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Figure 5. (a) Excess speed (c− c0)/c0 and (b) maximum elevation of leading upstream disturbance
vs. U/c0. Filled squares: present theory. Triangles: experiments by Melville & Helfrich, figure 11.
Solid line in (a) marks solution moving with the same speed as the body.

general very good, but we note that the model somewhat underpredicts the measured
elevations when the speed of the body exceeds c0. For Froude number U/c0 = 1.2
we compute a significantly smaller value for |Y |max than measured. We are not sure
about the reason for this disagreement, but we note that this Froude number is close
to the upper limit of the transcritical domain in this example, where the maximal
elevation as function of the Froude number drops significantly.

MH noted that the curves for (c− c0)/c0 and |Y |max/h0 in figure 5 with the scaling
shown should coincide, according to KdV theory. These curves have, however, quite
different forms. Our computations confirm the experimental observations.

5.2. Profiles of the interface

We next consider simulations of the interface elevation and compare with reproduced
recordings from MH, figure 10. In the experiments the elevation Y (t; x1) at station 1
and the horizontal velocity u1(t; x2) in the lower layer at station 2 are recorded. All
recordings are functions of time. The computed interface profiles Y (x, t = const.) are
shown for time instants when the body is (approximately) at station 1 (solid line) and
at station 2 (dashed line). The body started at x = 0. (We use the same vertical scale
as MH.)

In figures 6–8 are shown comparisons for three different choices of U: U/c0 = 0.81
(U/c̃0 = 0.88), U/c0 = 0.94 (U/c̃0 = 1.02), U/c0 = 1.14 (U/c̃0 = 1.24). In the cases
when U/c0 < 1, figures 6 and 7, both theory and experiments show that an upstream
undular depression is generated, with a number of local crests which is increasing
with time. The elevation behind the body reaches a maximum level at about 40%
of the thickness of the upper layer, and is continuously growing horizontally with
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Figure 6. Elevation of interface. U/c0 = 0.81. (a) Experimental recordings reproduced from MH
figure 10(a) (U/c̃0 = 0.881). (b) Present method, same vertical scale as in the experiments (h0 = 0.8h2).

t(g/h2)1/2 = 480 (solid line), t(g/h2)1/2 = 870 (dashed line). µ = 0.8114, h1/h2 = 4, ∆t(g/h2)1/2 = 0.5,

∆T (g/h2)1/2 = 5 (smoothing interval), ∆x/h2 = 1, N = 501, NB = 80, α = 1. (Computations with

∆t(g/h2)1/2 = 1 give the same results.)

time. For U/c0 = 1.14 (figure 8) theory and experiment show that a depression of
appreciable magnitude is generated close to the body, with speed slightly larger than
U. The flow is clearly unsteady, as an elevation downstream and a corresponding
volume upstream is continuously developing. The upstream depression becomes a
solitary wave after sufficiently large time.

All computations reproduce the experiments with striking agreement. The number
of local wave crests of the upstream disturbance which pass the recording stations,
and the elevation behind the body are almost exactly reproduced by the theory.
We have run convergence checks confirming the computations shown. We have no
explanation for why the theoretical depression is systematically somewhat smaller
than the recordings, but we speculate that the deviation between the computations
and the measurements falls within the error bounds of the interface recorder used in
the experiments.

In figure 7(a) are also shown simulations by MH using the KdV equation, which
exhibit twice as many peaks of the upstream undular depression as the observations
in the wave tank and the fully nonlinear computations.
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Figure 7. Same as figure 6 but U/c0 = 0.94. (a) MH figure 10(b) (U/c̃0 = 1.02); heavy solid

line: solution by the forced KdV equation. (b) Present method. t(g/h2)1/2 = 450 (solid line),

t(g/h2)1/2 = 780 (dashed line).

The simulations in figures 5–8 were performed with ∆t(g/h2)
1/2 = 0.5 and 1, giving

the same results. Convergence of the transient simulations are further documented by
the comparisons in figures 10 and 11 below.

5.3. Regime of unsteady transcritical flow

We find that the flow is unsteady for 0.38 . U/c0 . 1.2. In this regime the simulations
show that the fluid volume upstream, being an undular depression or a train of
solitary waves (see §5.4), and the length of the elevation behind the body are steadily
increasing with time. When U/c0 > 1.2, supercritical flow is obtained. The transient
waves due to the startup of the body are then swept downstream and a steady state is
reached. When U/c0 < 0.4, a train of steady lee waves is generated behind the body.
Analytical estimates of the unsteady regime of transcritical flow are derived by means
of asymptotic theories for free surface flows by Miles (1986), and for interfacial waves
by MH. The latter estimate predicts in the present example a lower limit which is
quite unrealistic and a range of transcritical flow that is too wide.
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Figure 8. Same as figure 6 but U/c0 = 1.14. (a) MH figure 10c (U/c̃0 = 1.24).

(b) Present method. t(g/h2)1/2 = 360 (solid line), t(g/h2)1/2 = 660 (dashed line).

5.4. Upstream solitary waves

When the speed of the body is in the transcritical regime, but less than c0, an undular
upstream depression is generated. This is also true when U slightly exceeds c0. (We
have performed simulations for U/c0 = 1.02, finding an upstream undular depression
in this case.) In the remaining part of the transcritical regime we find that solitary
waves propagating upstream are generated by the body. Computations are performed
for U/c0=1.09, 1.1, 1.14. In order to investigate the last regime more closely we first
fix the speed to U/c0 = 1.09 and vary the height of the body from a small to a large
value. More precisely, we let the body be determined by y = h2− H̃0sech2(Kx), where
H̃0 takes the values H̃0 = 0.125H0, 0.25H0, 0.5H0, H0. Here, H0 = 0.4h2 as before,
which means that the body, for H̃0 = H0, is the same as that in the examples shown
in figures 5–8. Increasing the value of H̃0 gives a larger forcing of the flow, but it also
corresponds to imposing stronger nonlinearity on the problem. We show in figure 9
the resulting profiles of the interface after non-dimensional times t(g/h2)

1/2 = 1020,
1500, when the body is at x/h2 = 469, 689, respectively. The maximal depressions in
the figure correspond to those of the solitary waves shown in figure 4.

In the first case the flow is developing towards supercritical flow, practically speak-
ing, and the depression at the position of the body is rather small. When we increase
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Figure 9. Elevation of interface. Fr = 1.09. Increasing height H̃0 of moving body, i.e. geometry
H̃0sech2Kx. t(g/h2)1/2 = 1020 (dashed line), t(g/h2)1/2 = 1500 (solid line). (a) H̃0 = 0.125H0, (b)

H̃0 = 0.25H0, (c) H̃0 = 0.5H0, (d) H̃0 = H0. µ = 0.8114, h1/h2 = 4, ∆t(g/h2)1/2 = 0.5, ∆T (g/h2)1/2 = 5
(smoothing interval), ∆x/h2 = 1, N = 501, NB = 80, α = 1. (Note the differences in vertical scale.)

H̃0 from 0.125H0 to 0.25H0 the change is rather large. Now the flow has become
unsteady, an elevation behind the body is continuously developing, and the depres-
sion slightly ahead of the body attains a rather large peak which slowly develops
into a solitary wave. The next two examples show the initial phases of generation of
upstream solitary waves. We observe in the last case (figure 9d) that one solitary wave
already been generated before the geometry has passed the location x/h2 = 500, cor-
responding to the length of the wave tank used in the experiments by MH. This means
that solitary waves should, according to the simulations, have been observed in their
laboratory experiments for this depth ratio if they had taken relevant measurements
at the end of the wave tank.

In order to more closely examine the properties of the simulated upstream waves we
compare with steady solitary wave solutions obtained by solving the equations with the
body absent, in a frame of reference following one wave, given the value of |Y |max/h2.
The comparisons are displayed in figure 10(a, b) and show that the time simulations
have produced leading waves having exactly the same forms as the steadily progressing
solutions. In the first case (H̃0 = 0.5H0) the amplitude is |Y |max/h2 = 0.888, and we
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Figure 10. Comparison between simulated leading upstream wave (solid line) and solitary wave
solution, steady profile (filled squares). (a) Same as figure 9c (body geometry given by 0.5H0sech2Kx).
|Y |max/h2 = 0.888. (b) Same as figure 9d (geometry given by H0sech2Kx). |Y |max/h2 = 1.171.

find that the propagation velocity in the time simulation is csim/(gh2)
1/2 = 0.5007,

while the solution of the steady equations gives csteady/(gh2)
1/2 = 0.5008. In the other

case (H̃0 = H0) the corresponding results are |Y |max/h2 = 1.171, csim/(gh2)
1/2 = 0.5091

and csteady/(gh2)
1/2 = 0.5092. For comparison, c0/(gh2)

1/2 = 0.4215. This very good
agreement documents that the leading upstream waves indeed may be termed solitary
waves.

The transcritical simulations in figure 9 show mainly that upstream solitary waves
with non-dimensional amplitude of order unity are generated when the height of the
topography is moderate, which means that a rather pronounced upstream effect takes
place. The upstream waves disappear, however, when the topography becomes too
small.

Finally we consider a different example with a thick layer above a thin, where µ =
0.7873 and h2/h1 = 4 . The non-dimensional linear shallow water speed c0 is the same
as in figures 9 and 10. A half-elliptical bottom topography with horizontal half-axis
10h1 and vertical half-axis 0.1h1 is moving with speed U/c0 = 1.1 in the lower layer.
This topography has approximately the same volume as the previous one, but imposes
weaker nonlinearity on the problem, since the height of the topography now is only
10% of the thinner layer. We have performed a very long time simulation with this
configuration (5520 time steps), and show the results in figure 11. At non-dimensional
time t(g/h1)

1/2 = 1080 two solitary waves are generated, at t(g/h1)
1/2 = 1920 almost

four, and at t(g/h1)
1/2 = 2760 almost six. The depression behind the topography

stabilizes at a level of 80% of the initial thickness of the lower fluid.
The solitary waves all have the same amplitude, within a variation of 0.3%. Upon
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Figure 11. Generation of upstream solitary waves. Moving bottom topography is a half-ellipse, hori-
zontal half-axis 10h1, vertical half-axis 0.1h1. U/c0 = 1.1, µ = 0.7873, h2/h1 = 4. (a) t(g/h1)1/2 = 1080,

(b) t(g/h1)1/2 = 1920, (c) t(g/h1)1/2 = 2760, (d) Close up of (c), filled squares mark steady solitary

wave solution with |Y |max/h1 = 0.869. ∆t(g/h1)1/2 = 0.5, ∆T (g/h1)1/2 = 3 (smoothing interval),
∆x/h1 = 1, N = 501, NB = 80, α = 0.

comparing with the solution of a steady profile with |Y |max/h1 = 0.869, we find a
striking agreement between the computed profiles, see figure 11(d), and the wave
speed: csim/(gh1)

1/2 = 0.5192, csteady/(gh1)
1/2 = 0.5191. Thus, the simulated waves may

be regarded as a train of solitary waves. The comparison documents the high accuracy
of the time simulations.

We find that the distance between the peaks is almost the same, except for a small
oscillation of order less than 1% of a mean value of about 28.5h1, which indicates that
a weak interaction is taking place between the individual waves. For t(g/h1)

1/2 = 2760,
the distance between the leading and the second wave is somewhat larger.

We have also performed simulations with an ellipse with half-axes 0.05h1 and
10h1, moving at U/c0 = 1.1. In this case also solitary waves are generated, with
|Y |max/h1 = 0.7006 and csim/(gh1)

1/2 = 0.5068, i.e. a rather pronounced upstream
influence.

More data from the simulations, for four different cases A–D, are summarized
in table 3. The data show that, for fixed volume, a taller body generates solitary
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Abody U/c0 cw |Y |max Aw ∆x peak-peak (cw −U)/∆x
A 0.81 h2

2 1.09 0.5007 (gh2)1/2 0.888 h2 11.74 h2
2 — —

B 1.61 h2
2 1.09 0.5091 (gh2)1/2 1.171 h2 19.79 h2

2 31.3 h2 0.00159 (g/h2)1/2

C (π/4) h2
1 1.1 0.5068 (gh1)1/2 0.701 h1 6.59 h2

1 — —
D (π/2) h2

1 1.1 0.5192 (gh1)1/2 0.869 h1 8.33 h2
1 28.5 h1 0.00195 (g/h1)1/2

Table 3. Upstream generation of solitary waves. Case A: figure 9(c) (H̃0 = 0.5H0) µ = 0.8114
and h1/h2 = 4. Case B: figure 9(d) (H̃0 = H0) µ = 0.8114 and h1/h2 = 4. Case C: ellipse
with half-axes 10h1, 0.05h1, µ = 0.7873 and h2/h1 = 4. Case D: figure 11, ellipse with half-axes
10h1, 0.1h1, µ = 0.7873 and h2/h1 = 4. Abody: cross-section area of body; cw: solitary wave
speed; Aw: cross-section area over/under one solitary wave; ∆x: distance between wave peaks.
(Non-dimensional c0 is the same in all cases.)

waves with higher amplitude, larger volume and a somewhat longer peak-to-peak
distance, than a shorter body. We find, on the other hand, that the wave speed
relative to the speed of the body, cw −U, becomes smaller in cases A and B than in
C and D. The generation rate of solitary waves, determined by (cw − U)/(peak-to-
peak distance), becomes somewhat higher for the example in figure 11 than in figure
9(d).

6. Conclusion
We have described a fully nonlinear time-stepping method for unsteady motion of

a two-layer fluid. Essential parts of the method are the use of Taylor series expansions
of the prognostic equations, application of spatial finite difference formulae of high
order and application of Cauchy’s theorem to solve the Laplace equation. The latter
is found to be superior to other methods with regard to avoiding instability, a result
which is partly explained by a stability analysis showing that the scheme is neutrally
stable for linear flows. Details of the numerical implementation are described and
convergence of the method is documented in several examples. The spatial step length,
∆x, must be less than twice the smallest thickness of the thinner layer, in order to
maintain analyticity of the function representing the image of the interface, see (20).
In most of the computations ∆x is set equal to the thickness of the thinner layer.
We may use a relatively large time step and still achieve a high accuracy of the
computations. The method is computationally very efficient and is suitable for long
time simulations. The velocity profiles in the fluids are inherent to the formulation
and may easily be extracted from the computations (we have not shown velocity
profiles here).

Fully nonlinear solitary wave profiles are compared with available experiments,
finding very good agreement. Upon comparing with weakly nonlinear theories (KdV,
BO and finite-depth) we find that these theories have quite limited ranges of validity,
and that they predict unrealistic wave shapes when the maximum elevation becomes
comparable to the thickness of the thinner layer.

We apply the model to simulate a set of experiments by Melville & Helfrich (1987)
on unsteady transcritical flow at a moving body, where KdV theory was reported
to give unrealistic results. We find here a satisfactory agreement between the fully
nonlinear theory and the experiments. Furthermore, the unsteady transcritical regime
is identified, where an undular depression is generated when the speed of the geometry
is less than a value which somewhat exceeds the critical speed, and a train of solitary
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waves is generated otherwise. A corresponding elevation of constant level develops
behind the geometry. Then the generation of upstream solitary waves by a moving
body is investigated in detail for some examples, finding that trains of solitary waves
with appreciable heights are propagating upstream. We have compared the simulated
waves with solitary wave profiles obtained by solving the nonlinear equations in a
frame of reference following the waves, where the propagation speed is determined
from the equations. There is a very good agreement between the simulated and steady
profiles. Even the propagation speed is reproduced in the time simulations with a
relative accuracy of 0.02%.

In the examples discussed in §5 the ratio between the depths of the layers is 1 to
4. In all examples we find that a moving body generates upstream disturbances with
rather large depression (elevation). We have performed simulations for other bodies
with smaller heights, imposing a correspondingly weaker nonlinearity to the problem.
Still we find that waves with rather large amplitudes are generated (the volume of the
body cannot be too small). Upon comparing with the results in §4 we find that the
flow is clearly outside the ranges of validity of the KdV and finite-depth theories. We
find that the same conclusion applies to the BO theory (results not shown here). Our
results thus indicate that weakly nonlinear theories have quite limited applications in
modelling unsteady transcritical two-layer flows when h1/h2 � 1 (or h2/h1 � 1), and
that a fully nonlinear method in general is required for this purpose. There may be
exceptions for very long bodies with very small height.

The remarkable discrepancies between the weakly nonlinear theories and the present
fully nonlinear interface method motivated us to set up experiments on internal waves
at the University of Oslo. The experiments are in an early phase, however, preliminary
results show very good comparison with the present method, even for not very sharp
pycnocline.

The method may be used to investigate collision properties of steep interfacial
solitary waves, and their interaction with a fixed geometry in the ocean or a bottom
topography (work is in progress). Furthermore, we may use the method to simulate
tidal generated interfacial waves at a sill, and the transient development of a large
hump into solitary waves.

At the free surface we have used the rigid lid approximation. The method may,
however, be generalized to model the motion of the free surface also.

This research was supported by The Research Council of Norway through Research
Fellowships for H.A.F and P.O.R. and a grant of computing time (Programme for
Supercomputing).

Appendix A. Pseudo-Lagrangian derivatives at the interface

To derive integral equations for ∂φ1ν/∂t, ∂Υξ/∂t, ∂
2φ1ν/∂t

2 and ∂2Υξ/∂t
2, pseudo-

Lagrangian derivatives of the kinematic boundary condition at the interface are
required. Taking the pseudo-Lagrangian derivative of (2) we find

D×
dt

(v1 · n̂− v2 · n̂) = n̂ · D×
dt

(v1 − v2) + (v1 − v2) ·
D×n̂

dt
= 0 (A 1)

where a scaled normal vector n̂ = |zξ |n = (−Yξ, Xξ) at I is introduced for convenience.
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Noting that

D×n̂

dt
=

∂

∂t
(−Yξ(ξ, t), Xξ(ξ, t)) =

∂

∂ξ
(−Yt(ξ, t), Xt(ξ, t)) = (−v×ξ, u×ξ) (A 2)

equation (A 1) gives

∂φ1ν

∂t
− ∂φ2ν

∂t
= yξ[u×(u1x − u2x) + v×(v1x − v2x)]

−xξ[u×(v1x − v2x) + v×(−u1x + u2x)] + (u1 − u2)v×ξ + (v1 − v2)u×ξ

(A 3)

which is used to derive integral equations for ∂φ1ν/∂t, ∂Υξ/∂t, similar to
(28)–(29).

Next we consider

D2
×

dt2
(v1 · n− v2 · n) = 0. (A 4)

By carrying out the differentiation we obtain

∂2φ1ν

∂t2
− ∂2φ2ν

∂t2
= −n̂ · {v× · ∇

(
∂v1

∂t
− ∂v2

∂t

)
+
∂

∂t
[v× · ∇(v1 − v2)]

−v× · ∇[v× · ∇(v1 − v2)]}+ 2
D×n̂

dt
· D×

dt
(v1 − v2)− (v1 − v2) ·

D2
×n̂

dt2
(A 5)

where D×n̂/dt is determined by (A 2) and

D2
×n̂

dt2
=

(
−
(

D×v×
dt

)
ξ

,

(
D×u×
dt

)
ξ

)
(A 6)

Equation (A 5) is used to derive integral equations for ∂2φ1ν/∂t
2, ∂2Υξ/∂t

2, similar to
(28)–(29).

Pseudo-derivatives of ψ are found by differentiating the dynamical boundary con-
dition at the interface.

Appendix B. The integral equations in discrete form
The discrete forms of the integral equations (28), (29) and (30) are given by

πΥξ(ξ
′) =

2

µ+ 1

N∑
ξ=1

B(ξ′, ξ)ψξ(ξ) +
µ− 1

µ+ 1

N∑
ξ=1

B(ξ′, ξ)Υξ(ξ)

+

N∑
ξ=1

[A1(ξ
′, ξ)−A2(ξ

′, ξ)]φ1ν(ξ) +
1

1 + µ

N∑
ξ=1

[−B1(ξ
′, ξ)−B2(ξ

′, ξ)]ψξ(ξ)

+
1

1 + µ

N∑
ξ=1

[−µB1(ξ
′, ξ) +B2(ξ

′, ξ)]Υξ(ξ) +

NB∑
ξ=1

[−A(ξ′, ξ) +A1(ξ
′, ξ)]φ1ν(ξ)

+

NB∑
ξ=1

[B(ξ′, ξ)−B1(ξ
′, ξ)]φ1ξ(ξ) (z′ on I), (B 1)
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π(1 + µ)φ1ν(ξ
′) =

N∑
ξ=1

A(ξ′, ξ)ψξ(ξ)− ψξξ(ξ′) + (1− µ)

N∑
ξ=1

B(ξ′, ξ)φ1ν(ξ)

+
1

1 + µ

N∑
ξ=1

[A1(ξ
′, ξ) + µA2(ξ

′, ξ)]ψξ(ξ)

+
µ

1 + µ

N∑
ξ=1

[A1(ξ
′, ξ)−A2(ξ

′, ξ)]Υξ(ξ)

−
N∑
ξ=1

[−B1(ξ
′, ξ)+µB2(ξ

′, ξ)]φ1ν(ξ)+

NB∑
ξ=1

[A(ξ′, ξ)+A1(ξ
′, ξ)]φ1ξ(ξ)

+

NB∑
ξ=1

[B(ξ′, ξ) +B1(ξ
′, ξ)]φ1ν(ξ) (z′ on I), (B 2)

πφ1ξ(ξ
′) =

N∑
ξ=1

[−A(ξ′, ξ) +A1(ξ
′, ξ)]φ1ν(ξ) +

1

1 + µ

N∑
ξ=1

[B(ξ′, ξ)−B1(ξ
′, ξ)]ψξ(ξ)

+
µ

1 + µ

N∑
ξ=1

[B(ξ′, ξ)−B1(ξ
′, ξ)]Υξ(ξ)

+

NB∑
ξ=1

[−A(ξ′, ξ) +A1(ξ
′, ξ)]φ1ν(ξ) + φ1νξ(ξ

′)

+

NB∑
ξ=1

[B(ξ′, ξ)−B1(ξ
′, ξ)]φ1ξ(ξ), (z′ on B) (B 3)

where A+ iB is given by (35) and Aj + iBj (j = 1, 2) by

Aj + iBj =

(
z′ξ

z∗ − z′ + (−1)j2ihj

)∗
, j = 1, 2 (B 4)
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